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ABSTRACT

The ability to predict the acoustics of a room without acoustical measurements is a useful capability. The motivation
here stems from spatial audio reproduction, where knowledge of the acoustics of a space could allow for more
accurate reproduction of a captured environment, or for reproduction room compensation techniques to be applied.
A cuboid-based room geometry estimation method using a spherical camera is proposed, assuming a room and
objects inside can be represented as cuboids aligned to the main axes of the coordinate system. The estimated
geometry is used to produce frequency-dependent acoustic predictions based on geometrical room modelling
techniques. Results are compared to measurements through calculated reverberant spatial audio object parameters
used for reverberation reproduction customized to the given loudspeaker set up.

1 Introduction

Accurate knowledge of the acoustics of an environ-
ment allows several advantages. In the acoustic de-
sign of spaces, either existing or at the planning stage,
Room Impulse Responses (RIRs) can be used to pre-
dict aspects such as strong echoes, clarity or Rever-
beration Time (RT60) [1, 2, 3]. This can highlight
potential issues and help inform solutions to improve
the overall acoustic. Through application of spatial
audio techniques these environments can also be repro-
duced/auralized [4], allowing the listener to experience
a space without being there. Although measurements
can provide this information, they are inherently re-

stricted to pre-existing spaces, and the number of re-
quired measurements for some applications can rapidly
become impractical. Consequently acoustic predictions
offer an attractive alternative.

One area of interest is the application of room mod-
elling to compensation techniques for spatial audio re-
production in rooms. If the RIR at the listening position
for each loudspeaker is known, it is possible to adjust
the loudspeaker signals to compensate for alterations
in the frequency response, strong early reflections, or
to some extent the level of reverberation [5, 6]. This is
particularly the case in the context of recent interest in
object-based audio, where more control is passed to a
renderer at the listener end [7]. For instance, recorded
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RIRs can be parameterized to generate Reverberant
Spatial Audio Objects (RSAOs) [8]. However, by es-
timating the room geometry, predictions can be made
when acoustic measurements are not available. This
scenario also fits new research areas, such as mixed
reality [9]. In this paper, RSAOs estimated from visual
room geometry estimation are evaluated.

For simulation of an acoustic environment it is nec-
essary to know the room geometry. Spaces such as
domestic living rooms on the reproduction side, or
recording environments on capture, ordinarily have un-
known geometries and interior designs. Consequently,
a robust method for obtaining the geometry is needed.
There have been many studies into indoor scene geom-
etry reconstruction from various visual sensors such as
a normal camera, video camcorder and RGB+Depth
(RGBD) camera [10, 11, 12, 13]. However, the limited
field-of-view presents a challenging problem to ensure
complete scene coverage; acquisition and processing
of long video sequences is required for complete re-
construction. Another problem is that they produce a
high-level of redundancy which is not necessary for
acoustic room modelling.

Cuboid-based simplified room geometry modelling us-
ing a spherical camera provides a potential solution for
the above problems. The room interiors are assumed
to be composed of piecewise planar surfaces aligned to
the main axes (Manhattan world) as introduced in [14].
Although not always the case, rooms - and the larger
objects within - very often fit well with this assumption.
In our previous research, we have used the Spheron
VR1, a mechanically calibrated line-scan camera for
simplified scene modelling [15]. Recently various inex-
pensive off-the-shelf 360◦ cameras have become pop-
ular2,3,4. The room geometry modelling method used
in this work extends the alignment process to 3 degree-
of-freedom (DOF) for a commodity spherical camera
(Ricoh Theta S4). In this paper an automatic cuboid-
based room geometry estimation method is proposed.
This produces a more complete scene model with a
compact representation for acoustic predictions.

The main contributions of this paper are:
1Spheron, https://www.spheron.com/products.

html [Accessed 27 Feb. 2017]
2LG 360, http://www.lg.com/uk/lg-friends/

lg-LGR105/ [Accessed 27 Feb. 2017]
3Samsung Gear 360, http://www.samsung.com/uk/

wearables/gear-360-c200/ [Accessed 27 Feb. 2017]
4Ricoh Theta, https://theta360.com/en/ [Accessed

27 Feb. 2017]

Fig. 1: Block diagram of the proposed system

• Estimation of complete room geometry, includ-
ing internal objects, using off-the-shelf spherical
cameras.

• Application of visual geometry estimates as inputs
to a room acoustic model.

• Comparison of predicted and measured RIRs
through derived RSAOs.

The rest of this paper is organised as follows: Section 2
outlines overview of the proposed system and describes
details of the proposed methods. Section 3 presents
system set up and datasets for experiments. Experimen-
tal results and discussion are given in Section 4, and
Section 5 makes conclusions of this work.

2 Proposed method

2.1 System Overview

A pipeline is proposed for estimating acoustic RIRs
from visual capture information. The examples pre-
sented are for loudspeaker based spatial audio setups
in listening room environments, but the principle is
extendible to other applications. Figure 1 shows a
block diagram for the whole process. In 3D geometry
estimation, a simplified structured room model is re-
constructed using cuboids from spherical stereo image
pairs. A full surrounding scene is captured by a spher-
ical camera at two different heights and mapped to
equirectangular images. They are aligned to the room
coordinate axes by cubic projection and line alignment.
Depth information of the scene is retrieved by disparity
estimation and planar regions are detected. Cuboid
elements are fitted to the detected planes to generate a
complete cuboid-based room model. In addition, object
classes for each region are predicted with a multi-scale
Convolutional Neural Network (CNN). This geometry
and object information is used as an input to acoustic
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room modelling pipeline which is based on geometrical
acoustics assumptions. Frequency dependent acous-
tic simulations are broken down into three sections:
early reflections derived from an image source model
(ISM) (providing a more deterministic early temporal
response); later reflections and onset of the reverberant
decay follow a ray tracing approach; and the late re-
verberant tail using Gaussian shaped and filtered white
noise, with an envelope based on the decay of the pre-
ceding solution.

2.2 Visual Capture System and Image
Alignment

To recover 3D scene information, the scene is captured
as a vertical stereo image pair with the spherical cam-
era. The spherical coordinate system of each camera
can be misaligned relative to one another or to the room
coordinate system. For image alignment to the room co-
ordinate system, cubic projection and Hough-line based
optimisation as proposed in [15] are utilised. However,
since this was designed to find the optimal z-axis ro-
tation for the mechanically tuned industrial camera,
the method was extended to 3 DOF (x-axis (α), y-axis
(β ) and z-axis (γ)) optimisation for a normal spherical
camera which can be less accurate in alignment. The
optimal α , β and γ values are found by Eq. (1), where
k represents the k-th face image in the cubic projection,
H the lines detected by the Hough line detection, and
C the cubic projection of the image I. The Hough lines
are categorised into general Hough lines H, horizontal
Hough lines Hh, and vertical Hough lines Hv, where
horizontal and vertical Hough lines represent those de-
tected parallel and perpendicular to the horizon within
1◦ of angle tolerance. Figure 2 shows an example of a
stereo alignment result.

(αopt ,βopt ,γopt) = argmax
α,β ,γ

6

∑
k=1

|Hh
k (α,β ,γ)∪Hv

k (α,β ,γ)|
|Hk(α,β ,γ)|

(1)

Hk(α,β ,γ) = H(Ck(R(α,β ,γ)I(x,y,z)))

2.3 Object Classification and 3D Geometry
Reconstruction

Our CNN architecture for semantic object classification
was built on the design of [16] and modified for colour,
depth and surface normal inputs from stereo matching.
Cubic projection images from the image alignment are
used as the input of the CNN because the spherical

(a) Original spherical image pair (b) Aligned spherical image pair

Fig. 2: Example image alignment result (Meeting
room (MR) data)

(a) Spherical stereo geometry (b) Disparity (depth) map

Fig. 3: Depth reconstruction

image is not appropriate for this architecture due to
its distortion from the spherical coordinate. Top and
bottom images of the cubic projection have very little
information for object recognition so they are forced to
be labelled as “ceiling” and “floor”, respectively. Zheng
et al. introduced a surface attributes detection method
using CNN [17] but it is restricted to a few material
categories and the result is not reliable. Therefore,
acoustic coefficients are manually assigned from the
object classification result.

3D geometry of the scene is reconstructed using cor-
respondence matching with spherical stereo geometry
illustrated in Fig. 3 (a). When disparity d(θ) is the
angle difference between θb and θt , the distance of a
certain 3D point P from the top camera is calculated:

rt = B/
(

sinθt

tan(θt +d)
− cosθt

)
(2)

Any correspondence matching algorithm can be used,
but here the variational approach [18] has been used
as region-based matching methods suffer errors from
spherical image distortion. The regions 5◦ from the
epipoles are cropped because depth from disparity di-
verge near the epipole areas according to the spherical
stereo geometry.
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Fig. 4: RIR simulated by joint techniques.

In order to build a complete cuboid-based proxy struc-
ture, a block world reconstruction method is used [15].
Planes aligned to the main axes are firstly detected. Un-
reliable planes which are too distant from the camera
or whose angle to the camera is too big are eliminated.
Planes close each other are merged into one plane to
simplify the scene. Finally cuboid structures fitted to
the plane elements are reconstructed. In order to get a
closed space for acoustic predictions, the largest and
farthest planes in each direction are considered as walls
for the room layout and their surface normals are set to
the inside of the room layout. All other planes are used
for cuboid structure generation by outward extrusion
process from the camera capture position and the face
normals are set outward (i.e. internal room objects).

2.4 Acoustic Modelling

The acoustic RIR modelling was achieved using a ge-
ometrical acoustic approach [3]. Whilst this method
is generally more accurate for medium to large scale
spaces, the technique is suited to medium to high fre-
quencies and provides a useful estimate of time and
direction of arrival of predicted reflections [3].

For each source and receiver pair the model was bro-
ken down into 3 sections for efficiency. The early re-
flections were modelled using an ISM technique [19],
which provides a more deterministic estimation of the
early temporal response than stochastic methods. The
later reflections and onset of the reverberant decay were
modelled stochastically using a ray tracing approach
[20], with the scattering coefficient used to determine
the probability of specular and non-specular reflections.
The late reverberant tail was modelled as Gaussian
shaped and filtered white noise, with an envelope based
on the decay of the ray-traced solution. The response
was calculated in octave bands from 63 Hz to 8.0 kHz,

with a summation providing the end result. The tempo-
ral threshold separating early and later reflections was
calculated as the median of the second order reflection
times of arrival (TOAs). This was done to define as
early most of the first order reflections. The reverber-
ation onset time (i.e. the mixing time) was calculated
from the visually estimated room geometry, exploiting
a model-based perceptual mixing time [7, 21]:

Tmix = 20 · V
S
+12, (3)

in milliseconds, where V is the room volume and S is
the total reflective surface area.

Manual input of source and receiver coordinates (based
on known distance from the back-right corner of the
room) and surface materials are used at this stage, with
the focus being on assessing the effect of the room
geometry used for predictions. The materials selected
were based on simple surface types for which acoustic
absorption coefficient and approximate scattering co-
efficient data were available (e.g. plasterboard walls,
carpet)[22]. The intention was to use material types
which could more realistically be identified by visual
techniques in future work. An example of a simulated
RIR is reported in Figure 4.

3 System set up and datasets

3.1 Visual Capture

For the visual capture of the room, two different
spherical cameras introduced in Section 1 were tested:
Spheron and Theta S. The proposed pipeline was eval-
uated for three different spaces: BBC spatial audio
listening room (LR, Fig. 5 (a), Spheron), BBC usabil-
ity lab (UL, Fig. 5 (b), Spheron) and University of
Surrey meeting room (MR, Fig. 2, Theta S). The LR is
a more controlled listening environment approximately
5.6 m × 5.0 m × 2.9 m with loudspeakers surrounding
a central listening position. The UL and MR are by
design more representative of typical domestic living
room environments, and are approximately 5.6 m× 5.2
m × 2.9 m and 5.6 m × 4.3 m × 2.3 m, respectively.

AES 142nd Convention, Berlin, Germany, 2017 May 20–23
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(a) Listening room (LR) (b) Usability lab (UL)

Fig. 5: Visual capture dataset images

3.2 Acoustic Measurements

For each test environment a series of RIR measure-
ments were taken using a swept sine method [23]. Both
living room style environments had loudspeaker setups
based on an ITU 5.0 surround sound setup [24], whilst
the LR included a high channel count setup, formed
by 32 loudspeakers. 48 microphone positions were
recorded, evenly spaced around two concentric circles
of radii 8.5 cm and 10.6 cm, respectively, to form a
custom array [25]. Furthermore, at the center of the
circular array, it was placed a soundfield microphone,
recording additional RIRs.

4 Experimental Evaluation

RIRs generated from the room geometry modelling
were parameterized following the RSAO concept [7, 8].
These parameters were then compared to the ones ex-
tracted from the recorded RIRs, to evaluate the room
geometry estimation accuracy. Object materials were
labelled to the most probable frequency-dependent ab-
sorption coefficient [22].

4.1 Visual Geometry Modelling

In object classification, we used the model of Eigen
and Fergus [16] trained for the version of NYUDepth
v2 dataset which was labelled with the 14 classes in-
dexed in Fig. 6 (a). The training set consists of a set
of 795 RGBD images, which was augmented using
random transformations. Fig. 6 (b)-(c) show manu-
ally annotated ground-truth and estimated object class
labels for the UL and MR. Most of the objects have
been correctly classified but some false labels are ob-
served in Sofa/Chair, Object/Furniture, Object/Wall,
Picture/Wall and Wall/Furniture.

(a) Object colour index

(b) Usability lab (UL)

(c) Meeting room (MR)

Fig. 6: Object classification results (Left: Ground-
truth, Right: Estimated labels)

Figure 7 (a) and (b) show the manually generated
ground-truth models of the rooms from the actual mea-
surements and the reconstructed cuboid-based models,
respectively. In the ground-truth model of the LR, most
small objects are eliminated to simplify the acoustic
model, since their effect will be small and their mod-
elling inaccurate. The size of the reconstructed LR is
5.85 m × 5.1 m × 2.9 m and includes a few cuboids
representing loudspeakers and chairs. For the UL, the
thin monitor on the table which was neglected in the
ground-truth model was reconstructed as a thick cuboid
because the thickness could not be estimated from the
images, and the table in the corner was missing because
it was occluded by the monitor. The MR was captured
by the Theta camera which is less accurately rectified
and aligned but the cuboid primitives represent the ap-
proximate structure of the scene well. The estimated
room sizes are 6.1 m × 5.0 m × 2.9 m for the UL and
6.15 m × 4.7 m × 2.45 m for the MR, which are close
(<10% error) to the original sizes.

4.2 RSAO Parameters

The RSAO parameters can be divided into two groups,
depending on the RIR part they belong to [8]: the direct
sound and the early reflection parameters are described
by their TOAs and Directions Of Arrival (DOAs); the
reverberation parameters are the late energy decays.

AES 142nd Convention, Berlin, Germany, 2017 May 20–23
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(a) Ground-truth model (b) Reconstructed model

Fig. 7: Room geometry estimation results (Top: LR,
Middle: UL, Bottom: MR)

The mixing time and frequency-dependent RT60s, cal-
culated from the energy decay, were analyzed for a
comprehensive comparison [7].

To extract the TOAs from measurements, the clustered-
dynamic programming projected phase-slope algorithm
(C-DYPSA) was employed [25]. It is based on the
DYPSA algorithm [26], and was used to calculate the
time domain peaks on each of the 48 microphone RIRs.
A clustering technique was then utilized to eliminate
outliers, considering every k-th reflection, over the 48
DYPSA outputs. The mean of the inlier TOAs cor-
responds to the TOA parameter τk,l , where l is the
loudspeaker index. Both azimuth and elevation DOAs
were extracted from the RIRs using a delay-and-sum
beamformer (DSB) technique [27]. To avoid the up-
down ambiguity given by the planar microphone ar-
ray, the soundfield microphone at the center of it was
employed. To apply the DSB, the RIRs were first seg-
mented, by applying a Hamming window (heuristically
obtained length of 2.5 ms for UL and LR, 0.8 ms for
MR), for each RIR, centered at τk,l [8]. The simulated
RIRs were generated by virtually placing a single mi-
crophone at the center of the microphone array used for
the recordings. Thus, TOAs and DOAs were calculated
by directly observing the image source positions.

For the mixing time, Eq (3) was used [21]. The RT60
was calculated for each octave band between 125 Hz
and 8 kHz, by analyzing the first 20 dB of decaying
late energy after Tmix [7].

Reflection and Direct Sound Labels
D. S. 1st Refl. 2nd Refl. 3rd Refl.
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Fig. 8: The median TOA errors ETOA
k . The dashed line

indicates the JND.

4.3 Evaluation Metrics

For comparison, the RSAO parameters were calculated
for both simulated and recorded RIRs. The TOA param-
eter errors εTOA

k,l were calculated as the absolute value
of the difference between the TOA obtained from the
simulated and the recorded RIRs, considering the direct
sound (k = 0) and each k-th early reflection, separately.
The evaluated error ETOA

k was then calculated as the me-
dian over the L loudspeakers available. Similarly, the
DOA errors εDOA

k,l were obtained as the absolute value
of the difference between the DOA calculated from the
simulated and recorded RIRs. This was done for both
azimuth and elevation, separately. As for ETOA

k , also
the evaluated error EDOA

k was obtained as the median
over the L loudspeakers. The mixing time error EMT

was calculated as the difference between the mixing
times obtained through the estimated room geometry
and the geometry groundtruth. Here, the absolute value
was not calculated. Finally, the RT60s for both sim-
ulated and recorded RIRs were estimated, for each
octave bands. The median of the simulated RT60s was
then calculated over the L loudspeakers.

4.4 Results and Discussion

The three different rooms LR, UL and MR are evalu-
ated. The early reflections, that were analyzed, were
the ones simulated through the image source method.
Whenever it occurred that multiple reflections were
detected within an interval of 1 ms, only the reflec-
tion with the least TOA error εTOA

k,l was included into
the analysis. Following this removal process, only the
direct sound and the first three reflections were ana-
lyzed. Acoustic simulations were run for the manually
labelled surface material types. An additional experi-
ment on MR was performed: a vision-based algorithm

AES 142nd Convention, Berlin, Germany, 2017 May 20–23
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Fig. 9: The DOA azimuth (a) and elevation (b) errors. The dashed lines indicate the JNDs.

Fig. 10: The temporal evolution of the measured RIR DOAs, for LR (left), MR (center), and UL (right), selected
as example. The red crosses indicate the TOA-DOA positions of the simulated RIR early reflections.

was used to recognize the materials [28], thus estimat-
ing the absorption coefficients automatically.

4.4.1 TOA and DOA Results

TOA errors ETOA
k are shown in Fig. 8. It is evident that,

as was expected, the error increases with the reflection
order. This is due to the propagation of the errors intro-
duced by the room geometry estimation. Among the
three datasets, MR is the one where the performance in
terms of TOAs is best, whereas LR is the worst. How-
ever, all the datasets have, up to the second reflection,
errors lower than 2.2 ms, corresponding to 75 cm, and
it is the minimum error perceived by humans [29].
Figure 9 (a) and (b) shows DOA azimuth and elevation
errors, respectively. The DOA errors EDOA

k increase

with the reflection order. DOA results are also affected
when multiple reflections arrive at the microphones
within the same time window. In fact, the RIR segment
that was extracted to calculate the DOA, usually con-
tains more than one reflection, not allowing the DSB
to determine a specific DOA. This problem reduced
the performance, in particular for reflections later than
the first. This observation follows the findings in [30],
where it was described how the first reflection plays a
major role in the human auditors perception of rooms.
For the first reflection, both azimuth and elevation have
errors in UL lower than their just-noticeable differences
(JNDs), that are defined as 12◦ and 35◦, respectively
[29]. Furthermore, although in MR and LR the errors
are slightly above the limit set by the azimuth JND,

AES 142nd Convention, Berlin, Germany, 2017 May 20–23
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when a more detailed evolution of the wavefronts is
investigated, as shown in Fig. 10, the DOAs appear
consistent with the measurements, perhaps suggesting
errors in the measured DOAs. In this figure exam-
ple, the three dataset TOAs and DOAs are compared,
by plotting the temporal evolution of the energy arriv-
ing from each direction at the microphone array posi-
tion [31]. These beamformed signals were obtained by
steering the DSB towards each azimuth direction with
a resolution of one degree. The TOA-DOA positions
of the simulated RIR direct sound and early reflections
were then overlaid as white crosses. From this figure,
it can be seen that direct sound and first reflection are
generally well estimated for every dataset. However,
although TOAs are still well estimated, for higher order
reflections, the simulated DOAs accuracy drop.

4.4.2 Mixing Time and RT60 Results

The mixing time errors EMT are shown in Table 1.
Since this parameter is calculated from the volume
and reflective surface values, UL and MR produced
larger error than LR. In fact, they are living room-like
environments, containing several objects that the visual
geometry estimation method could not accurately re-
construct. Furthermore, their negative values indicate
the general trend of overestimating the room object
sizes. On the other hand, LR is an empty room, thus,
it was easier for the reconstruction method to estimate
the geometry.

The RT60 results are shown in Figure 11. Produced
by manually labelling the materials, the RT60s of all
the datasets are well estimated and values at most of
the frequencies are within the band defined by the JND.
For the RT60, we assumed the JND as 57 ms [32].

4.4.3 Reflector Material Experiment Results

The last experiment’s results are reported in Figure 12,
where early decay time (EDT) and RT60 are reported,
for the MR dataset only. Comparisons of the simulated
quality were made by: manually assigning the reflec-
tors’ absorption coefficients; estimating the reflector
materials using a visual signal processing method [28].
Results show again that, for manual labels, both the
RT60 and EDT appear to be well estimated, being co-
herent with their JNDs (for EDT, the JND is 5 % [33]).
Moreover, although simulations with estimated mate-
rials had lower performance, they are still inside their
JND range for RT60, and close to the EDT perceptual
band, thus shaping interesting paths for future work.
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(a) LR dataset

Frequency (kHz)
0.125 0.25 0.5 1.0 2.0 4.0 8.0

R
T

60
 (

s)

0.0

0.1

0.2

(b) MR dataset
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Fig. 11: The RT60s for the simulated (red curves) and
recorded (blue curves) RIRs. The object mate-
rials were manually labelled. The dashed lines
are the JNDs.

Table 1: Mixing time errors, in ms and %.

LR MR UL
-0.07 ms (0.3 %) -1.39 ms (6.5 %) -3.39 ms (13.2 %)

5 Conclusions

A method has been outlined for prediction of room
acoustic RIRs based on visually captured information.
Room geometry was estimated through vertical spheri-
cal stereo systems using commercial off-the-shelf cam-
eras. Aligned cuboid representations of the room were
reconstructed using spherical stereo geometry. Exper-
iments were conducted by comparing the RSAO pa-
rameters of the estimated RIRs with the ones extracted
from recordings. Results show plausible agreement be-
tween predictions obtained using estimated geometry
and measurements.

Future extension of this research will include robust
material detection in the room geometry modelling to
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Fig. 12: Comparison between EDTs (left) and RT60s
(right) calculated from the recorded and sim-
ulated RIRs, of MR. The different colors in-
dicate different methods to label the object
materials. The dashed lines are the JNDs.

replace the current manually defined surface materials.
The room model is also being extended to include more
accurate wave-based methods (e.g. Finite Difference
Time Domain (FDTD)) which are inherently suited to
the cuboid based geometry method presented. This
work, still in progress, provides a step toward acoustic
room model reconstruction using audio-visual data.
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